Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 14: 1138215, 2023.
Article in English | MEDLINE | ID: covidwho-2278429

ABSTRACT

Cytokine release syndrome (CRS) due to severe acute respiratory coronavirus-2 (SARS-CoV-2) infection leads to life-threatening pneumonia which has been associated with coronavirus disease (COVID-19) pathologies. Centuries-old Asian traditional medicines such as Withania somnifera (L.) Dunal (WS) and Tinospora cordifolia (Willd.) Miers (TC) possess potent immunomodulatory effects and were used by the AYUSH ministry, in India during the COVID-19 pandemic. In the present study, we investigated WS and TC's anti-viral and immunomodulatory efficacy at the human equivalent doses using suitable in vitro and in vivo models. While both WS and TC showed immuno-modulatory potential, WS showed robust protection against loss in body weight, viral load, and pulmonary pathology in the hamster model of SARS-CoV2. In vitro pretreatment of mice and human neutrophils with WS and TC had no adverse effect on PMA, calcium ionophore, and TRLM-induced ROS generation, phagocytosis, bactericidal activity, and NETs formation. Interestingly, WS significantly suppressed the pro-inflammatory cytokines-induced Th1, Th2, and Th17 differentiation. We also used hACE2 transgenic mice to further investigate the efficacy of WS against acute SARS-CoV2 infection. Prophylactic treatment of WS in the hACE2 mice model showed significant protection against body weight loss, inflammation, and the lung viral load. The results obtained indicate that WS promoted the immunosuppressive environment in the hamster and hACE2 transgenic mice models and limited the worsening of the disease by reducing inflammation, suggesting that WS might be useful against other acute viral infections. The present study thus provides pre-clinical efficacy data to demonstrate a robust protective effect of WS against COVID-19 through its broader immunomodulatory activity.


Subject(s)
COVID-19 , Tinospora , Withania , Animals , Mice , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Neutrophils , Pandemics , RNA, Viral , SARS-CoV-2 , Cell Differentiation , Inflammation/drug therapy , Models, Theoretical , Mice, Transgenic
2.
Front Immunol ; 13: 945583, 2022.
Article in English | MEDLINE | ID: covidwho-2154720

ABSTRACT

Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%-40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.


Subject(s)
COVID-19 , Glycyrrhiza , Animals , Cricetinae , Cytokines/metabolism , Glycyrrhiza/metabolism , Humans , Interleukin-17 , Interleukin-4 , Mice , Plasminogen Activator Inhibitor 1 , RNA, Messenger , Reactive Oxygen Species , SARS-CoV-2
3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2058383

ABSTRACT

Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%–40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.

4.
Asian Journal of Medical Sciences ; 13(9):252-257, 2022.
Article in English | Academic Search Complete | ID: covidwho-2039638

ABSTRACT

Malaria is an endemic disease in a true sense. It is an acute febrile disease caused due to the parasite Plasmodium. However, unlike COVID-19, it failed to raise an international concern or gain the scientific limelight. Most of the 200 million globally affected by malaria, half of them are from Africa. Four of the nations, Nigeria (25%), the Democratic Republic of the Congo (11%), Mozambique (5%), and Uganda (4%), account for half of the world's malaria burden and is the leading cause of illness and death. In 2019, an estimated 5-6 million people died of malaria -- most of them are young children in sub-Saharan Africa. Many of the countries affected by malaria have the lowest economic status. In the malaria-endemic region, the most vulnerable groups are young children and pregnant women. The costs of malaria are enormous to individuals, families, communities, societies, and nations. After a struggle for three decades, the much-awaited malaria vaccine, RTS, S (brand name Mosquirix), was finally launched;but it came with its controversies and allegations. This review explored the different angles of this disease, the vaccine development, and the emerging debates. [ FROM AUTHOR] Copyright of Asian Journal of Medical Sciences is the property of Manipal Colleges of Medical Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

5.
Front Pharmacol ; 12: 746729, 2021.
Article in English | MEDLINE | ID: covidwho-1497115

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.

6.
Mol Ther Nucleic Acids ; 26: 321-332, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1284428

ABSTRACT

The recent SARS-CoV-2 outbreak has been declared a global health emergency. It will take years to vaccinate the whole population to protect them from this deadly virus, hence the management of SARS-CoV-2 largely depends on the widespread availability of an accurate diagnostic test. Toward addressing the unmet need of a reliable diagnostic test in the current work by utilizing the power of Systematic Evolution of Ligands by EXponential enrichment, a 44-mer G-quadruplex-forming DNA aptamer against spike trimer antigen of SARS-CoV-2 was identified. The lead aptamer candidate (S14) was characterized thoroughly for its binding, selectivity, affinity, structure, and batch-to-batch variability by utilizing various biochemical, biophysical, and in silico techniques. S14 has demonstrated a low nanomolar KD, confirming its tight binding to a spike antigen of SARS-CoV-2. S14 can detect as low as 2 nM of antigen. The clinical evaluation of S14 aptamer on nasopharyngeal swab specimens (n = 232) has displayed a highly discriminatory response between SARS-CoV-2 infected individuals from the non-infected one with a sensitivity and specificity of ∼91% and 98%, respectively. Importantly, S14 aptamer-based test has evinced a comparable performance with that of RT-PCR-based assay. Altogether, this study established the utility of aptamer technology for the detection of SARS-CoV-2.

7.
Front Immunol ; 12: 641447, 2021.
Article in English | MEDLINE | ID: covidwho-1264330

ABSTRACT

The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , Immunity, Humoral/drug effects , Immunogenicity, Vaccine , Peptide Fragments/administration & dosage , Spike Glycoprotein, Coronavirus/administration & dosage , Th1 Cells/drug effects , Adjuvants, Immunologic/administration & dosage , Animals , Biomarkers/blood , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Drug Stability , Glycosylation , HEK293 Cells , Humans , Immunization , Interferon-gamma/blood , Male , Mice, Inbred C57BL , Peptide Fragments/immunology , Protein Interaction Domains and Motifs , Protein Stability , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vero Cells
8.
Front Microbiol ; 11: 618097, 2020.
Article in English | MEDLINE | ID: covidwho-1069731

ABSTRACT

SARS-CoV-2 antibody detection assays are crucial for gathering seroepidemiological information and monitoring the sustainability of antibody response against the virus. The SARS-CoV-2 Spike protein's receptor-binding domain (RBD) is a very specific target for anti-SARS-CoV-2 antibodies detection. Moreover, many neutralizing antibodies are mapped to this domain, linking antibody response to RBD with neutralizing potential. Detection of IgG antibodies, rather than IgM or total antibodies, against RBD is likely to play a larger role in understanding antibody-mediated protection and vaccine response. Here we describe a rapid and stable RBD-based IgG ELISA test obtained through extensive optimization of the assay components and conditions. The test showed a specificity of 99.79% (95% CI: 98.82-99.99%) in a panel of pre-pandemic samples (n = 470) from different groups, i.e., pregnancy, fever, HCV, HBV, and autoantibodies positive. Test sensitivity was evaluated using sera from SARS-CoV-2 RT-PCR positive individuals (n = 312) and found to be 53.33% (95% CI: 37.87-68.34%), 80.47% (95% CI: 72.53-86.94%), and 88.24% (95% CI: 82.05-92.88%) in panel 1 (days 0-13), panel 2 (days 14-20) and panel 3 (days 21-27), respectively. Higher sensitivity was achieved in symptomatic individuals and reached 92.14% (95% CI: 86.38-96.01%) for panel 3. Our test, with a shorter runtime, showed higher sensitivity than parallelly tested commercial ELISAs for SARS-CoV-2-IgG, i.e., Euroimmun and Zydus, even when equivocal results in the commercial ELISAs were considered positive. None of the tests, which are using different antigens, could detect anti-SARS-CoV-2 IgGs in 10.5% RT-PCR positive individuals by the fourth week, suggesting the lack of IgG response.

SELECTION OF CITATIONS
SEARCH DETAIL